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ABSTRACT

Turbulence in the convective outer envelope of a luminous post–main-sequence star probably shreds any
magnetic field that is buoyed up from the radiative region below and probably also generates small local magnetic
fields. These magnetic structures would consist of well-tangled field lines, but could at most attain a steady state
strength based on a near equipartition of their mean energy with the turbulent kinetic energy. Even assuming the
maximum possible strength, the magnetic fields turn out to be too weak to affect significantly the dynamical
stability of the envelope. This is a consequence as much of the low value of the field strength as of the fact that the
field responds hydrodynamically to radial perturbations in the same manner as a gas with an adiabatic exponent of
4/3. Furthermore, fields this small are found to barely affect the radiative stability of the envelope. If the strongest
magnetic components could safely reach the atmosphere, however, they might exert a noticeable effect there, or if
the whole radiative interior were permeated with a strong magnetic field, very rapid mass loss at the surface might
keep the outer layers strongly magnetic at all times before turbulence could break up the field lines. Otherwise, the
bulk of the outer envelopes in stars such as yellow hypergiants, luminous blue variables, and hydrogen-poor Wolf-
Rayet stars are not expected to be strongly magnetic.

Subject headings: stars: magnetic fields — stars: oscillations — stars: variables: other — stars: Wolf-Rayet —
turbulence

1. INTRODUCTION

The envelope of a luminous post–main-sequence star feels a
number of forces acting on it besides the inward force of
gravity and the combined outward forces exerted by gas pres-
sure and radiation pressure. These other forces are produced by
turbulent pressure, axial rotation, mass loss, and magnetic
fields. While their effects have been much studied in the case
of main-sequence stars, less is known about them in more
evolved stars. Of special interest here are luminous stars on
the verge of dynamical instability or of radiative instability
(de Jager et al. 2001). How do these additional forces affect
the stability properties of such stars? The classes of stars that
might be relevant, if they are post–main-sequence stars, con-
sist of yellow hypergiants, luminous blue variable stars (LBVs
or S Doradus variables), and Wolf-Rayet stars.

Three of these additional forces have been recently studied
to answer this question. The outward acceleration of matter due
to surface mass loss (the stellar wind) tends to destabilize the
stellar envelope, sometimes very strongly, but turbulent pres-
sure and axial rotation turn out to be too feeble to have any
significant effect (Stothers 1999a, 2002, 2003a). This leaves us
with magnetic fields.

The origin of any magnetic field in a post–main-sequence
star may be either primordial or recent. If the field is fossil, it
may be a leftover from the main-sequence phase. However, the
hydrogen-poor layers that are now exposed at the surface of the
star once lay inside the hydrogen-burning convective core and
later became part of the intermediate convection zone that
developed just above the hydrogen-burning shell. In these
strongly convective regions, it is likely that the magnetic field
lines became twisted and shredded into small flux tubes by the
turbulent motions: a phenomenon demonstrated in numerical
simulations of the Sun’s convective envelope (Tobias et al.
2001). Therefore, we do not expect to find a large-scale

magnetic field in the present envelopes of luminous post–
main-sequence stars.

With or without a seed magnetic field (and even without any
axial rotation of the star), a small-scale magnetic field can be
built up by turbulent motions alone. Batchelor (1950) showed
that such spontaneous field generation is possible in an elec-
trically conductive medium if 4��� > 1, where � is the elec-
trical conductivity and � is the kinematic viscosity. Since the
kinematic viscosity of a stellar envelope is too small to be
effective, Kulsrud (1955) suggested that eddy viscosity might
work. In fact, eddy viscosity may well explain the large-scale
structural features of turbulence itself (Stothers 2000; Canuto
2000). Numerical simulations have confirmed the feasibility
of generating magnetic fields by such a turbulent dynamo
(Meneguzzi & Pouquet 1989; Cattaneo 1999). The amplitude
of the steady state field is difficult to estimate, but Thelen &
Cattaneo (2000) have suggested a mean magnetic energy of up
to 25% of the turbulent kinetic energy.

Another possible source for the magnetic field is rotational
dynamo action at the base of the outer convection zone if the
envelope is rotating sufficiently fast, as in the case of the Sun
(Parker 1993; Tobias et al. 2001). A toroidal field is generated
at the base and floats up toward the surface. Only the strongest
component of the field reaches the atmosphere; the rest gets
broken up by turbulence and converted into a poloidal field.
The magnetic field might also originate from dynamo action in
the helium-burning convective core. Although ordinary dif-
fusion processes and rotation-induced meridional circulation
are probably too slow to be able to conduct such a deep-seated
magnetic field through the radiative intermediate layers,
buoyancy forces acting on the flux tubes might lift them much
faster (MacGregor & Cassinelli 2003).

The upshot of this brief analysis is that the outer convection
zone contains, most likely, a small-scale magnetic field that is
strongest in layers in which the turbulence is strongest. The
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maximum possible field strength would be that of an equi-
partition field. Turbulence no doubt scrambles the field lines
very thoroughly. With these assumptions, our present investi-
gation of the effects of a magnetic field on post–main-sequence
stellar envelopes can now proceed to a treatment of ionization-
induced dynamical instability in xx 2 and 3 and of radiative
instability in x 4. Our final conclusions are summarized in x 5.

2. DYNAMICAL INSTABILITY

To estimate the maximum likely strength of the magnetic
field H in the turbulent layers of the envelope, we assume that
the average local magnetic energy exists in equipartition with
the local turbulent energy:

H2
� �
8�

¼ 1

2
�v2turb: ð1Þ

Here � is the mass density and vturb is the mean turbulent
velocity. A reasonable approximation is to equate vturb with the
mean convective velocity derived from standard mixing-
length theory (Cox & Giuli 1968; Stothers 2003a). In the
nonturbulent layers we set hH2i ¼ 0. The mean squared
magnetic field strength is here a spatial average taken over a
spherical shell.

If the magnetic field lines are well tangled within the fluid,
they will exert stresses that are nearly isotropic. Then the
mean radial component is simply hH2

r i ¼ 1
3
hH2i. Trasco (1970)

has shown that the Lorentz force on the fluid reduces, in this
case, to the space derivative of a magnetic pressure, Pmag ¼
hH2i=24�. It is assumed that spherical symmetry of the star is
preserved.

The equation of motion then becomes

d2r

dt2
¼ � 1

�

d

dr
P þ

H2
� �
24�

� �
� gþ f ; ð2Þ

where P ¼ Pgas þ Prad represents the thermodynamic pres-
sure, g ¼ GM (r)=r2 is the gravitational acceleration, and f is
the mass-loss acceleration. We have neglected the turbulent
pressure and have replaced it with the magnetic pressure for
two reasons. First, the magnetic field, once built up, tends to
weaken the turbulence (Peckover & Weiss 1978; Tayler 1986;
Cattaneo & Vainshtein 1991; Cattaneo 1994; Lee et al. 2003).
Second, our main purpose is to elucidate and quantify the
effect of the magnetic field, without the complicating effects
of other forces that could confuse the interpretation.

Under these assumptions, in particular a magnetic field that
does not interact further with the turbulence, it follows that a
small overall radial displacement of the fluid will carry along
with it the magnetic lines of force, so that the magnetic flux is
locally conserved. The associated change is (Stothers 1979)

� H2
� �
H2h i

¼ 4

3

��

�
: ð3Þ

Thus, the magnetic field behaves as a gas with an adiabatic
exponent of 4/3. This result is general and does not depend on
how magnetic energy is partitioned with turbulent energy. For
simplicity, and with some physical justification (Stothers
2002), we also assume f / g; therefore, the ratio  ¼ f =g is a
constant in space. Finally, continuity of matter throughout the
star requires

dM (r)

dr
¼ 4�r2�: ð4Þ

Assuming small radial adiabatic perturbations, as is appro-
priate for the consideration of dynamical instability (Stothers
1999b), we write, for example, r ¼ r0 þ �r exp (i�t), where
� is a complex pulsation frequency. Adiabaticity requires
�P=P0 ¼ �1��=�0. Linearizing equations (2)–(4) and then
dropping the zero subscripts, we find

d 2

dr2
�r

r

� �

þ 4� V

r
þ 1
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where V ¼ �(d ln P)=(d ln r), C ¼ (d ln �1)=(d ln r), and

� ¼
H2
� �
24�P

; � ¼ � 1

g�

d

dr

H2
� �
24�

� �
: ð6Þ

For dynamical instability, it is necessary and sufficient that
�2 � 0, where � is the smallest eigenvalue for which �r=r is
finite at the stellar surface and 0 at the base of the envelope.
The one-zone model of a stellar envelope with uniform �1,

according to equation (5) with �r=r ¼ const, becomes dy-
namically unstable if �1 � 4=3, as long as 1�  � � > 0.
This result is identical to the standard criterion derived for
nonmagnetic stars, because the magnetic field lines behave as
a gas with �1 ¼ 4=3. This result for the one-zone model has
been obtained before (Stothers 1981), although not as a spe-
cial case of a more general theory such as the one considered
here. It has also been obtained even earlier for a uniform-
density stellar model (Chandrasekhar & Limber 1954).
It might be thought possible to write for the total pressure

P ¼ Pgas þ Prad þ Pmag and to incorporate Pmag, with a cor-
responding specific magnetic energy Emag, into the thermo-
dynamic identity, in order to derive generalized values of �1

and �2. This approach has been used before by Tutukov &
Ruben (1974), who assumed Pmag ¼ K�4=3 with constant K,
and by Mollikutty et al. (1989), who assumed Pmag ¼ KPgas

with constant K. Assumptions such as these, however, are
too narrow to be applicable to our models (compare Fig. 1).
Another possible approach is that of Lydon & Sofia (1995) and
Li & Sofia (2001), who assumed that the integral of the spe-
cific magnetic energy over the mass of the star is conserved
during an adiabatic change. All in all, however, our present,
more direct approach seems simplest and least objection-
able in theory, as it follows the very general methodology of
Chandrasekhar & Fermi (1953) and Chandrasekhar & Limber
(1954).

3. APPLICATIONS TO DETAILED MODELS

To assess quantitatively the effects of tangled magnetic
fields on realistic stellar envelope models, we consider two
very luminous models at the borderline of dynamical insta-
bility. These were studied previously to determine the effects
of turbulent pressure on their stability (Stothers 2003a). Both
models possess M=M� ¼ 21:6 and log (L=L�) ¼ 5:802, and
convective quantities in them were computed with a ratio of
convective mixing length to local pressure scale height, �P,
equal to 1.4. One model represents a yellow hypergiant with

STOTHERS1000 Vol. 607



log Te ¼ 3:97 and the other an LBV with log Te ¼ 4:35. We
replace here the turbulent pressure with the magnetic pressure
hH2i=24�, calculated from equation (1). Figure 1 shows the
runs of the ratio � ¼ hH2i=24�P through the two envelope
models.

The magnetic field affects the models in two ways. First, it
changes the effective gravity of the equilibrium model through
the inclusion of the Lorentz force:

1

�

dP

dr
¼ �geA ¼ �g 1�  � �ð Þ: ð7Þ

Second, it interacts with the oscillations of the model around
the equilibrium state.

In practice, however, the influence of a magnetic field turns
out to be negligible. The reason is that dynamical stability
is determined primarily by the layers cooler than 1 ; 105 K
(Stothers 2003a). Figure 1 shows that � is generally very close
to 0 and nowhere exceeds 0.05 in the outer layers, although it
may grow large deep inside the iron convection zone (T �
1:5 ; 105 K), where turbulence becomes supersonic for the
bluest stars. Since j�j � � for �T1, � also is locally small and
is even less effective than � because it changes sign in the
helium convection zone (T � 3 ; 104 K), leading to a near
cancellation of its small modification of the effective gravity
there. Since the oscillation amplitude �r=r remains nearly
constant above the iron convection zone, the interaction of the
magnetic field with the oscillations has essentially no effect on
the standard criterion for dynamical instability, as a simple
inspection of equation (5) easily reveals.

Thus, the effect of the magnetic field on dynamical insta-
bility proves to be even less than the effect of turbulent pres-
sure, because the magnetic field adjusts as a gas with an
adiabatic exponent of 4/3, but the turbulent pressure in the
outer layers is nearly static, adapting scarcely at all to the

oscillations owing to its long timescale (Stothers 2003a). The
estimated maximum strength of the magnetic field is found to
be very small: less than 102 G in the helium convection zone
and less than 104 G in the iron convection zone.

If, however, surface mass loss happens to be so rapid that the
exposed layers display a strong pre-existing interior magnetic
field (x 4), and if this magnetic field increases with depth, it
would counter gravity to some extent. Densities would then
drop, bringing �1 closer to 4/3. The critically needed rates of
mass loss that we calculated previously for the threshold of
dynamical instability (Stothers 2002) would accordingly be
reduced by a factor of (1þ �)1=2(1þ �= )�1=2 if � were spa-
tially constant. However, we do not actually anticipate the
presence of large interior magnetic fields.

4. RADIATIVE INSTABILITY

Although, formally, most of the outer envelope of a very
luminous star is convectively unstable, the densities are so low
that energy is transported almost entirely by radiative pro-
cesses (except in the iron convection zone, which is nearly
adiabatic). This circumstance simplifies matters considerably.

The equation of radiative transfer is given by

dPrad

dr
¼ � ��L

4�cr2
: ð8Þ

Dividing equation (8) into equation (7) with M (r) ¼ M and
integrating from the surface down to a layer at r gives

1� 	 ¼ �h iL
4�cGM 1�  � �ð Þ : ð9Þ

Here 	 ¼ Pgas=P and

1

�h i
¼ 1

1�  � �ð ÞPrad

Z r

R

1�  � �

�

dPrad

dr
dr: ð10Þ

Since, physically, 	 cannot be less than 0, there exists an
upper limit to the luminosity of the stellar envelope that pre-
serves radiative stability:

LE ¼ 4�cGM 1�  � �ð Þ
�h i

: ð11Þ

This upper limit represents a generalization of the original
Eddington luminosity, since it incorporates the mass-loss ac-
celeration and the effect of magnetic fields, which Eddington
(1921) ignored.

In practice, little change from our earlier models without
magnetic fields is incurred, because � is usually very small.
Only in the iron convection zone of the brightest and hottest
models, in which turbulence becomes supersonic, could a
strong magnetic field be generated (Fig. 1). In that case, both
turbulence and the magnetic field would tend to promote ra-
diative instability.

Another possibility is that a strong magnetic field lies
embedded in the underlying radiative zone. If the rate of mass
loss is sufficiently high, the overlying layers may get stripped
off in a time short compared to one, or a few, convective
overturning times. Since in this case the outer layers would
not have time either to generate a new magnetic field or to
shred an old one, the instantaneous envelope would then
maintain the strong pre-existing magnetic field everywhere. A
uniform magnetic field would have no effect, because for such

Fig. 1.—Run of the maximum expected ratio of magnetic pressure to
thermodynamic pressure (based on an assumed equipartition of magnetic en-
ergy and turbulent kinetic energy) through the outer envelope of two post–
main-sequence stellar models with M=M� ¼ 21:6, log (L=L�) ¼ 5:802, and
�P ¼ 1:4. The yellow hypergiant model has log Te ¼ 3:97 and f =g ¼ 0
(dashed line), and the LBV model has log Te ¼ 4:35 and f =g ¼ 0:16 (solid
line). Both models sit on the borderline of dynamical instability.
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a field � ¼ 0. Assuming, however, that � is constant in space,
we would have 1�  � � ¼ (1�  )=(1þ �); the reduction in
radiative stability might be considerable for large enough �. In
addition, if full-scale turbulence itself does not have sufficient
time to develop, the zone with a large iron opacity bump might
become nearly radiative, in which case the opacity bump alone
could cause radiative instability (Kato & Iben 1992). These
uncertainties concerning the iron convection zone of course
make it difficult to project a realistic value for the rate of mass
loss. However, the minimum rate of mass loss needed for ra-
diative instability is probably safely predictable to within an
order of magnitude (Stothers 2003b).

5. CONCLUSION

The present study of magnetic fields in the outer envelopes of
luminous post–main-sequence stars suggests that any magnetic
fields sequestered there are probably small-scale, weak, and
under the control of turbulence. In that case, they should have
very little influence on the dynamical stability and radiative
stability of the envelope. Our previous conclusions for yellow
hypergiants, most LBVs, and most hydrogen-poor Wolf-Rayet
stars, based on nonmagnetic stellar models, therefore remain
unchanged.

A somewhat different implication, however, follows for the
brightest and hottest of these stars. If supersonic turbulence
manages to build up a strong magnetic field deep inside the
iron convection zone (or in a rotating tachocline at the inter-
face with the underlying radiative zone), the strongest com-
ponent of the magnetic field might be buoyed up to the
surface, where it would affect the structure and stability of the
atmosphere. Previously, a magnetic field was not considered
to be an important factor for the atmosphere (de Jager et al.
2001). Much, of course, depends on the rate of stellar-wind
mass loss. If the rate were very high, there would not be time
enough for turbulence to generate and convey upward the
magnetic flux tubes. On the other hand, if the radiative interior
already stored a significant magnetic field, the rapid exposure
of these layers by surface mass loss would ensure that the
whole outer envelope would remain constantly permeated
with a strong magnetic field. Observations of the stellar wind
with respect to its overall shape and also with respect to the
shapes of its spectral lines can possibly reveal useful infor-
mation about the interior magnetic field. If the bipolar shapes
of some LBV nebulae are not due to axial rotation or to du-
plicity of the underlying star, then perhaps a strong magnetic
field may be responsible for it.
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